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ABSTRACT Ebola virus (EBOV) infection is a major public health concern due to
high fatality rates and limited effective treatments. Statins, widely used cholesterol-
lowering drugs, have pleiotropic mechanisms of action and were suggested as po-
tential adjunct therapy for Ebola virus disease (EVD) during the 2013–2016 outbreak
in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV
infection in vitro. Statin treatment decreased infectious EBOV production in primary
human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin
treatment did not interfere with viral entry, but the viral particles released from
treated cells showed reduced infectivity due to inhibition of viral glycoprotein pro-
cessing, as evidenced by decreased ratios of the mature glycoprotein form to pre-
cursor form. Statin-induced inhibition of infectious virus production and glycoprotein
processing was reversed by exogenous mevalonate, the rate-limiting product of the
cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-
treated cells produced EBOV particles devoid of the surface glycoproteins required
for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV in-
fection and suggest that the efficacy of statin treatment should be evaluated in ap-
propriate animal models of EVD.

IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, ex-
pensive, and scarce. Statins are inexpensive generic drugs that have been used for
many years for the treatment of hypercholesterolemia and have a favorable safety
profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV)
production. Our study reveals a novel molecular mechanism in which statin regu-
lates EBOV particle infectivity by preventing glycoprotein processing and incorpora-
tion into virus particles. Additionally, statins have anti-inflammatory and immuno-
modulatory effects. Since inflammation and dysregulation of the immune system are
characteristic features of EVD, statins could be explored as part of EVD therapeutics.
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Ebola virus (EBOV) poses a threat to people throughout Africa, and, as the 2013–2016
outbreak demonstrated, to the rest of the world (1). The 2013–2016 outbreak was

unprecedented in the history of the virus, with over 28,000 cases and more than 11,000
deaths (1). Despite the devastating consequences of EBOV infection, treatment options
remain limited and experimental (2). Ebola virus disease (EVD) is associated with
systemic inflammation, endothelial dysfunction, coagulopathy, vascular leakage, shock,
and organ failure (3, 4). Statins, well-known cholesterol-lowering drugs, have potential
beneficial effects beyond their ability to reduce cholesterol levels, including anti-
inflammatory and immunomodulatory functions and the ability to reverse endothelial
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abnormalities (5, 6). For example, statins have been implicated in improving survival in
sepsis patients (7–9); like EVD, sepsis is characterized by inflammation, endothelial
dysfunction, and coagulopathy (6). Statins are already FDA approved for reducing high
cholesterol, have a favorable safety profile, and are inexpensive. Thus, they were
suggested as a possible adjunct therapy for EVD patients during the 2013–2016
outbreak (10).

Statins block 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the
rate-limiting enzyme that catalyzes the conversion of HMG-CoA to mevalonate, a key
intermediate for synthesis of cholesterol and isoprenoids (11). Since cholesterols play
important roles in membrane fluidity, organization, and signaling (12, 13), they serve as
important platforms for viruses to enter cells (14, 15). Statins have been widely reported
to block infection of many enveloped viruses by inhibiting the cholesterol/isoprenoid
pathway (16–22). Cholesterol likewise contributes to the EBOV life cycle, including viral
entry, fusion, and budding (23–29); EBOV has been reported to utilize cholesterol-
enriched rafts as a platform for cell entry, as well as for assembly and budding from cells
(25, 30–32). In addition, cholesterol-dependent interactions between EBOV glycopro-
teins (GPs) are essential for virus assembly (15). This further suggests that drugs
lowering cholesterol levels, like statins, could be useful therapeutics for EVD patients.

EBOV virions project glycoprotein (GP) spikes that are synthesized and inserted into
the host cell-derived envelope during budding (33). EBOV GP is synthesized in several
forms. The most abundant form of GP is a secreted protein (sGP) translated from an
unedited mRNA, whereas the structural GP is a product of the edited mRNA. The
monomeric EBOV GP, a type I transmembrane glycoprotein, is processed by a complex
series of events (34–36). An N-glycosylated, endoplasmic reticulum (ER)-resident form
of GP precursor (preGP) undergoes N,O-glycosylation maturation in the Golgi apparatus
to become GP0 (36). GP0 is then transported further into the trans-Golgi network, where
the proprotein convertase furin or a furin-like protease cleaves GP0 at a multibasic motif
that is conserved in all EBOV strains (36). Cleavage results in the mature N,O-
glycosylated GP1 and in the GP2 subunit linked by disulfide bond (34–38). These
subunits interact to form GP1,2, present on virions as trimeric spikes; GP1 mediates
receptor binding while GP2 is critical for fusion of the EBOV envelope with the
endosomal/lysosomal membrane (39, 40). However, unlike other viruses, cleavage of
GP0 by furin is not required for fusion (41, 42) or glycoprotein incorporation into virions
(43–46).

Here, we report that a statin (lovastatin) suppresses infectious EBOV production in
a human hepatoma cell line (Huh7) and in primary monocyte-derived macrophages,
cell types that are in vivo targets for EBOV replication. Statin treatment inhibited
processing of preGP into GP1 in EBOV-infected cells or cells transfected with plasmids
encoding GP1,2; the effect was reversed by adding mevalonate. EBOV particles pro-
duced in statin-treated cells were depleted of the essential glycoprotein subunit GP1

required for virus entry, suggesting that statins reduce EBOV infectivity by inhibiting
glycoprotein maturation and incorporation into virions. In addition, we have tested the
effect of 5 other types of statins, fluvastatin, simvastatin, atorvastatin, rosuvastatin, and
pitavastatin, on EBOV replication. Of all the statins, simvastatin and pitavastatin were
the most potent in reducing EBOV infectivity. Our results suggest that statins selectively
inhibit preGP maturation and should be further investigated in in vivo models for EBOV
infection.

RESULTS
Statin treatment inhibits EBOV infection. To test if statins affect EBOV replication,

Huh7 cells were infected with the EBOV variant Mayinga (Ebola virus/H. sapiens-tc/
COD/1976/Yambuku-Mayinga) at a multiplicity of infection (MOI) of 0.05. After 1 h of
virus adsorption, the cells were treated with dimethyl sulfoxide (DMSO) (vehicle con-
trol) or with 20 �M or 50 �M lovastatin (referred to as “statin” here unless stated
otherwise), the first clinically approved statin, in medium supplemented with lipoprotein-
deficient serum (LPDS). LPDS eliminates the possible uptake of cholesterol from the
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medium (47). After 72 h postinfection (hpi), cells were fixed and viral antigen expression
was evaluated by immunofluorescence assays using polyclonal anti-EBOV serum. As
shown in Fig. 1A, EBOV antigen-positive staining was seen throughout infected Huh7
cells treated with DMSO only. However, EBOV-positive staining was reduced compared
to controls in cells treated with statin at either concentration. To ensure that statin-
mediated reduction in EBOV-positive staining was not due to cytotoxicity, cell viability

FIG 1 Statin inhibits Ebola virus infection. (A) Huh7 cells were infected with Ebola virus (EBOV) at an MOI of 0.05.
After infection, cells were washed and then treated with various concentrations of statin or with DMSO (control).
At 72 hpi, the cells were fixed, permeabilized, and stained with anti-EBOV rabbit polyclonal antibody. (B) Culture
supernatants of Huh7 cells infected with EBOV and treated with statin or DMSO as in panel A were harvested
72 hpi, and viral titers were quantified by 50% tissue culture infective dose (TCID50) determination. (C) Viability
(percent) of statin-treated Huh7 cells was determined after 72 h of treatment. Values were normalized to
DMSO-treated controls. (D) Human monocyte-derived macrophages from 4 separate donors were infected with
EBOV at an MOI of 0.05, and cells were washed and then treated with various concentrations of statin or DMSO.
Cell supernatants were harvested 72 hpi, and viral titers were quantified by TCID50 determination. The results
shown are means � standard deviations from triplicate wells and representative of two independent experiments.
(E) Viability (percent) of statin-treated and mock-infected human monocytes/macrophages was determined after
72 h of treatment. Values were normalized to DMSO controls.
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was assayed after 72 h of treatment. Cell viability was unaffected by either concentra-
tion of statin (Fig. 1C). These results suggest that statin reduced EBOV infection.

To determine if statin treatment can inhibit infectious EBOV production, we exam-
ined viral titers in supernatants of infected cells. High titers of infectious virus (1.5 �

107/ml) were detected at 72 hpi in vehicle control-treated cell culture supernatants
supplemented with LPDS. Treatment with statin under the same cell culture conditions
reduced EBOV titers; 20 �M statin decreased the production of infectious EBOV titers by
�1.1 log, and 50 �M decreased EBOV titers by 1.5 log (Fig. 1B). In contrast, statin
treatment under similar conditions did not affect titers of adenovirus type 5, a nonen-
veloped virus (see Fig. S1 in the supplemental material).

The antiviral potency of statin treatment was also evaluated in primary human
monocyte-derived macrophages, since these cells represent a major target of EBOV
infection. To account for donor variations, cells from 4 different donors were tested. Cell
viability of macrophages treated with 10 �M statin was �80% for all the donors
(Fig. 1E). Untreated cells yielded infectious titers ranging between 5 � 105 and 4 � 106

(Fig. 1D). Statin treatment efficiently reduced EBOV titers in macrophages from each
donor; 2.5 �M statin reduced infectious EBOV titers by 0.5 to 1.0 log, and 10 �M statin
reduced EBOV titers by 1 to 2 log (Fig. 1D).

Statin inhibition of EBOV infection is reversed by exogenous mevalonate but
not by LDL. Statin blocks mevalonate generation and subsequent cholesterol biosyn-
thesis by competitively inhibiting HMG-CoA reductase (11). To investigate whether the
anti-EBOV effect of statin was dependent on its ability to specifically inhibit mevalonate
production, we added mevalonate during statin treatment. Since inhibition of choles-
terol synthesis can be compensated for by import of low-density lipoprotein (LDL)-
derived cholesterol from outside the cells, we also looked at the effects of LDL
supplementation during statin treatment. Huh7 cells were infected with EBOV as
described above and then treated with statin with or without the indicated concen-
trations of LDL or mevalonate. As shown in Fig. 2A, addition of mevalonate reversed
statin-mediated reduction in EBOV titers in a dose-dependent manner, while meval-
onate alone had no effect on viral titers. Expression of viral glycoprotein GP1/preGP and
nucleoprotein (NP) was also restored when mevalonate was added during statin
treatment (Fig. 2B). In contrast to mevalonate, adding LDL did not reverse the effects
of statin treatment on viral titers (Fig. 2C). Altogether, we showed that inhibition of
EBOV infection by statin treatment was reversed by mevalonate, the immediate down-
stream product of the reaction catalyzed by HMG-CoA reductase. These findings are
consistent with statin reducing EBOV infectivity by inhibiting HMG-CoA reductase and
not via off-target effects.

Statin treatment does not affect EBOV entry. To assess whether reduced pro-
duction of infectious virus was due to the inhibition of EBOV entry into cells, we
measured the levels of cell-associated EBOV NP RNA at 3 hpi. Huh7 cells pretreated with
statin were infected with EBOV at an MOI of 3 to ensure synchronous infection. Levels
of viral NP RNA in the lysed cells were measured by quantitative reverse transcription
PCR (qRT-PCR) and normalized to cellular glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) mRNA levels. As shown in Fig. 3A, NP RNA levels did not significantly differ
among the samples, indicating that statin did not affect the levels of internalized EBOV
genome. On the other hand, treatment with the positive control U18666A, a Niemann-
Pick C1 protein (NPC1) inhibitor previously shown to prevent EBOV glycoprotein-
dependent entry (25), reduced NP RNA copy numbers in a dose-dependent manner.
These results are consistent with statin not affecting EBOV entry.

Statin treatment impairs EBOV infectivity. To further examine the mechanism by
which statin reduces the levels of EBOV released from infected cells, the specific
infectivity of virions made in the presence of statin was determined by comparing 50%
tissue culture infective doses (TCID50) with copy numbers of viral RNA released into
culture supernatants of infected cells at 48 hpi. To maximize the initial number of
infected cells, Huh7 cells were infected with EBOV at an MOI of 2.0; MOIs higher than
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2.0 caused a significant drop in cell viability at 48 hpi (data not shown). Infected cells
were then treated either with DMSO (vehicle control) or with 20 �M or 50 �M statin.
After 48 h, no differences were noted in extracellular EBOV RNA copy numbers released
from cells treated with statin or with vehicle control (Fig. 3B). In contrast, yield of
infectious virus (measured as TCID50 per milliliter) in supernatants from statin-treated
cells was approximately ~4 to 9 times lower than that in DMSO-treated samples
(Fig. 3B). The ratio of TCID50 per milliliter to viral RNA copy numbers (Fig. 3C) in
statin-treated cells was reduced to ~5 to 10% of controls. Taken together, these data
indicate that postinfection statin treatment decreased infectivity of newly synthesized
EBOV particles.

Statin treatment inhibits EBOV glycoprotein maturation. To explore the mech-
anism responsible for reduced particle infectivity in statin-treated cells, we examined
the impact of statins on the viral proteins involved in virus assembly and budding: the
matrix protein VP40 and the envelope glycoprotein GP1,2. We first determined whether
statin treatment affected VP40 expression. Huh7 cells were transfected with plasmid
expressing VP40 and then treated with statin or vehicle control; cell lysates were
analyzed by Western blotting. As shown in Fig. S2, VP40 expression levels were similar
in statin-treated and vehicle-treated cells. We then examined GP1 expression in cells
transfected with plasmid expressing EBOV GP1,2 and treated with statin. Two forms of
GP were detectable: a 110-kDa form sensitive to both endoglycosidase H (endo H) and
peptide-N-glycosidase F (PNGase F) digestion that had previously been identified as the
N-glycosylated precursor present in the endoplasmic reticulum (designated preGP) and
the 140-kDa form that was sensitive only to PNGase F digestion and was identified as
the mature GP1 (Fig. 4B ), consistent with the presence of complex N- and O-glycans

FIG 2 Mevalonate, but not low-density lipoproteins, restores the antiviral effect of statin. (A) Huh7 cells
infected with EBOV as in Fig. 1A were treated with DMSO or 50 �M statin in the presence of indicated
concentrations of mevalonate (Mev). Culture supernatants of infected cells were harvested 72 hpi, and viral
titers were quantified by determining TCID50. (B) Glycoprotein (GP), nucleoprotein (NP), and actin expres-
sion was analyzed by Western blotting in lysates of Huh7 cells infected with EBOV and treated with DMSO
or 50 �M statin in the presence of indicated concentrations of Mev. (C) Huh7 cells infected with EBOV as
in Fig. 1A were treated with DMSO or statin (50 �M) in the presence of various concentrations of
low-density lipoprotein (LDL). Culture supernatants of infected cells were harvested 72 hpi, and viral titers
were quantified by TCID50 determination.
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(36). Most of the GP synthesized in statin-treated cells was the immature precursor
glycoprotein (preGP) containing high-mannose sugar chains sensitive to endo H treat-
ment (compare Fig. 4A with B). In contrast, the expression of mature N,O-glycosylated
glycoprotein (GP1), which was resistant to endo H treatment (compare Fig. 4A with B),
decreased upon statin treatment. Statin did not similarly affect the glycosylation
pattern of NPC1 (Fig. S3), suggesting that the observed effect on GP1 was specific.

We next evaluated the effect of mevalonate on EBOV preGP maturation. Cells were
treated with increasing concentrations of mevalonate, and GP1 and preGP expression
levels were determined. As shown in Fig. 4C, increasing mevalonate concentrations at
least partially reversed statin-mediated inhibition of mature GP1 expression. In parallel,
a decrease in immature preGP expression was observed. Densitometry analysis indi-
cated an increase in the GP1/(GP1 � preGP) ratio, indicating restoration of preGP
maturation to GP1. This ratio did not change in cells treated only with mevalonate.
Partial rescue of preGP processing efficiency and viral titers (Fig. 2A) by mevalonate in
statin-treated cells is consistent with statin reducing viral titers by a mechanism
impeding preGP maturation.

Statin treatment inhibits preGP glycan maturation. EBOV GP1,2 is cleaved into
subunits GP1 and GP2 by the proprotein convertase furin at the RRTRR501 site. To

FIG 3 Statin inhibits specific infectivity of EBOV but does not affect entry. (A) Huh7 cells pretreated with
the indicated concentrations of statin or DMSO for 48 h were infected with EBOV (MOI � 3.0). For a
positive control, cells were pretreated for 1 h with various concentrations of U18666A before infection
with EBOV. After 1 h, infected cells were washed with serum-free medium; fresh medium with or without
statin or U18666A was then added back to the cells. After 3 h of incubation at 37°C, NP gene RNA copy
numbers were determined by qRT-PCR and normalized to GAPDH mRNA. Results represent mean percent
normalized NP RNA levels, with error bars indicating standard deviations calculated from 3 independent
experiments. *, P � 0.005. (B) Culture supernatants of cells infected with EBOV (MOI � 2.0) and treated
with DMSO or statin were harvested 48 hpi, and viral titers were quantified by TCID50 determination. RNA
was extracted from supernatants of cells, and absolute quantification of viral RNA copy numbers was
done using a standard curve with known viral titers. (C) Ratios were calculated using TCID50-per-milliliter
values from panel B divided by the extracellular viral RNA copy numbers from panel A. Mean specific
infectivity was calculated as a percentage of DMSO-treated samples. Mean values from triplicate wells are
shown, and error bars indicate standard deviations. The graph shown is representative of 3 independent
experiments.
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investigate whether statin inhibits maturation of preGP glycan, we investigated the
effect of statin on mutant EBOV GP1,2 resistant to furin cleavage. To generate this
mutant, we replaced the RRTRR cleavage site with AGTAA, as described previously (44,
45). Huh7 cells were transfected with plasmids encoding wild-type or furin-resistant
mutant EBOV GP1,2 and treated with either statin or furin-like protease inhibitor
(proprotein convertase inhibitor). GP1,2 levels were determined in cell lysates by
Western blotting. Unlike wild-type EBOV GP1,2, which was processed into GP1, mutant
GP1,2 was observed as a higher-molecular-weight form of preGP consistent with the

FIG 4 Statin inhibits EBOV GP processing. (A) Huh7 cells were transfected with a plasmid expressing
EBOV GP1,2 and treated with statin or DMSO. GP and actin expression in cell lysates was then analyzed
by Western blotting. To determine the extent of GP1 cleavage, blot images were subjected to densi-
tometry analysis. The percentage of GP1 was determined by dividing the signal of GP1 over the total
amount of glycoprotein recognized by GP1 MAb [GP1/(GP1 � preGP)]. (B) Cell lysates of EBOV GP1,2-
transfected cells either were left untreated or were digested with endo H or PNGase. GP and actin
expression was then visualized by Western blotting. (C) Huh7 cells transfected with a plasmid expressing
EBOV GP1,2 were treated with 50 �M statin or DMSO in the presence of various concentrations of
mevalonate. GP and actin expression in cell lysates was analyzed by Western blotting. The percentage
of GP1 was determined as in panel A. (D) Huh7 cells were transfected with a plasmid expressing either
wild-type EBOV GP1,2 or GP1,2 in which the furin cleavage motif (furin-site mutant GP1,2) had been
mutated and were treated with statin (left panel), proprotein convertase inhibitor (PC inh, right panel),
or DMSO control. GP and actin expression in cell lysates was then analyzed by Western blotting. To
determine the extent of GP0 cleavage, blot images were subjected to densitometry analysis. Percentage
of GP1 or GP0 was determined by dividing the signal of GP1 or GP0 over the total amount of glycoprotein
recognized by GP1,0 MAb [GP1,0/(GP1,0 � preGP)].
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molecular weight of GP0 (36) (Fig. 4D). Treating mutant EBOV GP1,2-transfected cells
with statin resulted in a dose-dependent decrease in GP0 level compared to vehicle
control, similar to samples with wild-type GP1,2. No changes in preGP levels were
detected in cells expressing either wild-type or furin-cleavage-resistant EBOV GP1,2. In
addition, the GP0/(GP0 � preGP) ratio in cells expressing the mutant EBOV GP1,2 was
similar to that in cells expressing wild-type GP1,2, indicating that statin treatment
affected GP1 glycan maturation independently of GP0 cleavage by furin.

Statin treatment results in GP1-deficient virions. To confirm the effect of statin

treatment on EBOV GP maturation, we infected Huh7 cells with EBOV, treated the cells
with DMSO or statin, and partially purified the viral particles released from infected
cells. GP1,2 and VP40 expression in cell lysates and corresponding viral particles
from statin-treated cells was analyzed by Western blotting. As shown in Fig. 5,
blotting cell lysate samples from EBOV-infected, vehicle-treated cells showed bands
of preGP (~110 kDa) and GP1 (~140 kDa), as expected. Treatment with statin resulted
in a selective decrease in GP1 levels compared to preGP and VP40. These results are
consistent with statin inhibiting preGP maturation of GP1, as was observed in GP1,2-
transfected cells.

Analysis of viral particles from supernatants showed GP1 migrating at ~140 kDa in
the pelleted virions, and no uncleaved preGP or GP0 was detected (Fig. 5). In cells
treated with statin, GP1 levels decreased in a dose-dependent manner while VP40 levels
were unchanged. These results are consistent with the concept that statin treatment
resulted in production of VP40-containing EBOV particles deficient in GP1. Taken
together, these results indicate that the lowered expression of GP1 in statin-treated,
EBOV-infected cells results in reduced incorporation of GP1 into EBOV particles, leading
to lower infectivity.

Multiple statins show antiviral activity against EBOV. To investigate the efficacy

of other commonly prescribed statins, we compared the antiviral activities of lovastatin,
fluvastatin, simvastatin, atorvastatin, rosuvastatin, and pitavastatin in Huh7 cells. As
shown in Fig. 6A, at all doses tested, simvastatin and pitavastatin reduced EBOV
infectious particle production most potently: 50 �M simvastatin or pitavastatin reduced
viral titers by 2.5 log. Rosuvastatin inhibited EBOV production least effectively, reducing
viral titers by ~1 log, while lovastatin, atorvastatin, and fluvastatin were moderately
effective, reducing titers by 1.7, 1.5, and 1.4 log, respectively. The viability of untreated
cells was similar to that of cells treated with each statin (Fig. 6B).

FIG 5 Statin inhibits GP processing and incorporation of GP1 into EBOV particles. Huh7 cells infected
with EBOV at an MOI of 2.0 were treated with DMSO or statin. Supernatants and cell lysates were
collected, and EBOV particles were purified from supernatants by ultracentrifugation through a sucrose
cushion. Purified EBOV particles were resuspended in 2� sample lysis buffer, and levels of GP and VP40
were analyzed by Western blotting. Percentage of GP1 was determined by dividing the signal of GP1 over
the total amount of glycoprotein recognized by GP1 MAb [GP1/(GP1 � preGP)].
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DISCUSSION

Statins, well-known cholesterol-lowering drugs, have been proposed as therapeutic
agents against certain viruses (16–18, 21, 22, 48–59). Statins are known for their
anti-inflammatory and immunomodulatory effects as well as for preserving endothelial
integrity; inflammation, immune system dysregulation, and endothelial dysfunction are
major contributors of EVD pathogenesis (3, 60–62). Statin use was suggested as an
adjunct therapy for EVD during the 2013–2016 outbreak (63). A clinical trial evaluating
atorvastatin for use in EVD was registered with clinicaltrials.gov (NCT02380625), but the
trial was never initiated, presumably because the outbreak was waning prior to the
scheduled study start date. Here, we provide evidence of the antiviral effects of statin
treatment in a human liver cell line and in primary human macrophages, both major
target cells of EBOV. The antiviral activity of statin in Huh7 cells was due to loss in
particle infectivity rather than inhibition of viral entry (Fig. 3). Statin reduced the levels
of GP1, the envelope glycoprotein responsible for receptor binding and entry into cells,
in GP1,2-transfected (Fig. 4) and EBOV-infected (Fig. 5) cells. Finally, we found that virus
particles produced in statin-treated cells had lower levels of GP1 relative to VP40 matrix
protein than did control cells. Thus, statin’s antiviral activity was due to its interference
in GP1 maturation, leading to production of EBOV particles with impaired infectivity.

While GP1 levels were reduced in infected cells and in released EBOV particles, VP40
levels were not (see Fig. S2 in the supplemental material). Similarly, qRT-PCR analysis
showed no changes in the extracellular levels of EBOV RNA after statin treatment, while
TCID50 values were reduced upon statin treatment (Fig. 3). Interaction of VP40 with
minigenome RNA has been reported to be sufficient for packaging RNA into virus-like

FIG 6 Antiviral activity of other statins against EBOV. (A) Huh7 cells were infected with Ebola virus (EBOV)
at an MOI of 0.05. After infection, cells were washed and then treated with various concentrations of
lovastatin, fluvastatin, simvastatin, atorvastatin, rosuvastatin, and pitavastatin or DMSO (control). Culture
supernatants were harvested 72 hpi, and viral titers were quantified by 50% tissue culture infective dose
(TCID50) determination. (B) Viability (percentage) of Huh7 cells treated with lovastatin, fluvastatin,
simvastatin, atorvastatin, rosuvastatin, and pitavastatin or DMSO (control) was determined after 72 h of
treatment. Values were normalized to DMSO-treated controls.
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particles (64). Our observation that the levels of extracellular VP40 and genomic RNA
did not change even in the presence of little GP1 is consistent with this report (64) and
supports the idea that an interaction between the ribonucleoprotein components and
VP40 is a critical step for the budding and release of viral particles (65).

Despite the abundant preGP present in cells transfected with furin-cleavage-
resistant EBOV GP1,2, statin treatment resulted in decreased GP0 levels similar to those
seen in cells transfected with wild-type EBOV GP1,2 (Fig. 4D). This indicates that statin
affects a step prior to GP0 cleavage, possibly by blocking transport of preGP out of the
ER (36, 38). The observed decrease in the GP1 steady-state levels could be due to
degradation of GP1 (via ER-associated or proteasomal degradation) resulting from its
prolonged ER residency because of improper or insufficient maturation of preGP. Since
cholesterol levels are lowest in the ER in the secretory pathway (66), ER-resident events
involving transmembrane proteins might be particularly sensitive to very small devia-
tions in cholesterol levels from a critical threshold. While most of statins’ effect is
associated with lowering cellular cholesterol levels, statins also blunt the nonsterol
branch of the mevalonate pathway, decreasing formation of isoprenoids and altering
protein prenylation, an often critical event in posttranslational modulation of proteins
(67). Inhibitors of isoprenoid intermediates, such as geranylgeranyltransferase inhibitor
(GGTI), which inhibits prenylation of Rho proteins, or farnesyltransferase inhibitor (FTI),
which inhibits the prenylation of the Ras proteins geranyltransferase and farnesyltrans-
ferase, have been effective against certain viruses (19, 51). Whether statin’s effects on
GP1 processing are mediated through the isoprenoid pathway is currently unclear and
needs further investigation.

All statins tested in our study reduced EBOV titers, although with variable efficacy.
Simvastatin and pitavastatin inhibited EBOV production most potently (0.5- to 2.5-log
reduction at 5 to 50 �M concentrations). Differences in the antiviral effects of individual
statins may be due to many factors, such as chemical structures of each compound
affecting pharmacokinetics and pharmacodynamics (68). One limitation of our study is
that higher concentrations of statins were required to inhibit EBOV replication in vitro
than are achievable in humans using current dosing regimens, as plasma levels of
statins are usually low (maximum concentration of drug in serum [Cmax], 0.019 to
0.031 �M for simvastatin and 0.005 �M for lovastatin, based on 40-mg oral dose [69]).
Although statin concentrations are likely to be much higher in the liver (69), a major site
of EBOV replication, comprehensive in vivo studies in appropriate animal models are
required. Unfortunately, statins do not reliably decrease circulating cholesterol concen-
trations in rodents (70–72), and thus, such studies would require nonhuman primate
models that recapitulate human EVD signs (73).

In summary, we provide evidence that statin treatment decreases production of
infectious EBOV virions in a human liver cell line (Huh7) and primary human macro-
phages, both of which are primary target cells for EBOV infection. Statin reduced
production of infectious EBOV particles in Huh7 cells by interfering with GP processing
and reducing the amount of GP1 incorporated into virus particles. The results of this
study clearly show that statin inhibits EBOV infection. Our results, combined with
statins’ known role in suppressing inflammation (74) and preserving endothelial integ-
rity (75), pathways that are impaired in EVD, argue for a potential benefit of using
statins as adjunctive therapy in patients with EVD. Ideally, the use of an antiviral that
exhibits additional effects in combination with a statin has the potential both to block
virus replication and to decrease the deleterious effects of inflammation on the host.
Clearly, the next step for evaluating statins for use in EVD would require testing in a
nonhuman primate model of disease to ensure both safety and potential efficacy.

MATERIALS AND METHODS
Biosafety. All work with infectious virus was conducted in a biosafety level 4 laboratory at the

Centers for Disease Control and Prevention (CDC; Atlanta, GA) according to the guidelines of CDC
standard operating procedures.

Cells, virus, plasmids, reagents, and antibodies. Huh7 cells were from Apath, LLC (Brooklyn, NY),
and were propagated in Dulbecco’s modified Eagle’s medium (DMEM) with 10% (vol/vol) fetal calf serum
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(FCS; HyClone, Thermo Fisher Scientific, Waltham, MA) and 1� nonessential amino acids (Life Technol-
ogies, Grand Island, NY, USA). For statin treatment, sterol-depleted medium (LPDS; Sigma-Aldrich, St.
Louis, MO, USA; not heat inactivated) was used instead of medium with FCS to eliminate the possible
uptake of cholesterol from the medium, as previously reported (47). Human monocyte-derived macro-
phages were isolated as described previously (76). Vero-E6 cells were obtained from the CDC core facility
and maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% (vol/vol) FCS
and 1% penicillin-streptomycin (Life Technologies). Wild-type EBOV variant Mayinga (Ebola virus/H.
sapiens-tc/COD/1976/Yambuku-Mayinga) was from the CDC Viral Special Pathogens Branch reference
collection. Lovastatin was from Calbiochem (Billerica, MA). Human LDL was purchased from Sigma-
Aldrich (St. Louis, MO, USA). Mevalonate was synthesized according to the method of Goldstein et al. (77).

The plasmid encoding EBOV GP1,2 was designed to express a human codon-optimized synthetic gene
(GPco) corresponding to that of the EBOV Mayinga isolate. Briefly, the GPco (without RNA editing site)
gene was purchased from GenScript (Piscataway, NJ) and cloned into the polymerase II (PolII) expression
vector pCAGGS (78). EBOV GP resistant to furin cleavage (RRTRR501 cleavage site replaced with AGTAA)
was purchased from GenScript as described previously (44, 45). The plasmid encoding Flag-tagged VP40
has been described previously (79).

The following antibodies were used in this study: rabbit polyclonal antibody against EBOV NP (IBT
Bioservices, Rockville, MD), rabbit polyclonal antibody against EBOV GP (IBT Bioservices), and rabbit
polyclonal antibody against EBOV for immunofluorescence (in-house reagent 70331; Viral Special Patho-
gens Branch, CDC, Atlanta, GA). The anti-Flag antibody and mouse monoclonal anti-actin antibody were
from Sigma (Sigma-Aldrich, St. Louis, USA). NPC1 antibody was from Abcam (Cambridge, MA).

Transfection and infection. To determine the effects of statin on GP processing or VP40 expression,
2.0 � 105 Huh7 cells plated in 12-well plates were transiently transfected with plasmids expressing either
EBOV GP or Flag-tagged VP40; transfections were done using LT-1 reagent according to the manufac-
turer’s instructions (Mirus, Madison, WI). After 24 h, cells were treated with statin in LPDS-containing
DMEM; cells were harvested 48 h posttransfection. For EBOV infection, Huh7 cells were plated at 2 �
105 cells per well in 12-well plates. The next day, cells were infected with EBOV at the indicated MOI for
1 h. For control experiments, Huh7 cells were infected with adenovirus type 5 (ATCC, Manassas, VA) at
an MOI of 0.05 for 1 h. Virus inoculum was removed, and cells were washed with serum-free medium.
Fresh medium containing 10% LPDS and with or without statin was then added. Culture supernatants
and cell lysates were harvested and analyzed as indicated.

TCID50 and cell viability determination. Supernatants from EBOV-infected Huh7 cells and
monocyte-derived macrophages were harvested 72 hpi, and virus titrations were performed in Vero-E6
cells. Three days postinfection, the cells were fixed, permeabilized, and stained to visualize viral proteins.
For adenovirus type 5 titer, Vero-E6 cells were treated with 8 serial 10-fold dilutions of supernatants of
infected Huh7 cells. After 10 days, the wells with cytopathic effects were counted for each dilution after
crystal violet staining. Endpoint viral titers were determined, and TCID50 was calculated as described
previously (80). Results represent mean titers, with error bars indicating standard deviations calculated
from 3 independent experiments. For human monocyte-derived macrophages, results represent mean
titers with standard deviations from 3 replicate wells, representative of 2 independent experiments.

Cell viability was determined on statin-treated and mock-infected cells, using CellTiter-Glo (Promega)
according to the manufacturer’s instructions.

qRT-PCR. Huh7 cells were infected with EBOV for the indicated times, and then RNA was isolated
from cells or from supernatants of infected cells using the MagMAX-96 total RNA isolation kit (Thermo
Fisher Scientific). To determine viral RNA copy numbers, RNA was extracted from supernatants of
infected cells. Absolute quantification of viral RNA copy numbers was done by measuring EBOV NP copy
numbers using a standard curve with known viral titers serially diluted 5-fold. qRT-PCR was performed
with the EBOV NP assay (81). To measure cell-associated EBOV NP gene levels, Huh7 cells pretreated with
statin for 48 h or with U18666A (positive control) for 1 h were infected with EBOV at an MOI of 3. Cells
were harvested after 3 h, and RNA was isolated from the cells. NP RNA levels were measured by qRT-PCR
as described above and normalized to GAPDH mRNA. Results represent mean percent normalized NP
RNA levels, with error bars indicating standard deviations calculated from 3 independent experiments.

Western blotting. At indicated times after transfection or infection, cell lysates were harvested by
adding lysis buffer containing 50 mM NaCl, 5 mM EDTA, 1% NP-40, 1.0% SDS, and 0.5% sodium
deoxycholate supplemented with a protease inhibitor cocktail (Sigma-Aldrich). Lysates from infected
cells were gamma irradiated at 2 � 106 rads using a high-energy 60Co source to ensure complete virus
inactivation, allowing work at biosafety level 2. Proteins were electrophoretically separated on either 3
to 8% Tris-acetate or 4 to 12% NuPAGE gels (Invitrogen) and transferred to nitrocellulose membranes.
The membranes were blocked for 1 h with buffer containing Tris-buffered saline, 0.1% Tween 20, and 5%
nonfat dry milk and then probed overnight at 4°C with primary antibodies. Membranes were developed
using horseradish peroxidase-conjugated secondary antibodies and enhanced chemiluminescence. After
detection of primary antibodies, the membranes were stripped and reprobed with antiactin antibody as
a loading control. Results shown are representative of 3 independent experiments.

Immunofluorescence. At 72 hpi, the cells were washed twice with phosphate-buffered saline (PBS)
and fixed with 10% formalin at room temperature for 20 min. After formalin fixation, the cells were
washed three times with PBS and permeabilized with 0.1% Triton X-100 for intracellular staining. The
primary antibodies were added at a 1:1,000 dilution in 1% bovine serum albumin in PBS for 1 h. The cells
were then washed 3 times with PBS and incubated for 30 min with the secondary antibodies diluted
1:1,000 in 1% bovine serum albumin in PBS. Multiple final washes were done, and the images were taken
using a Nikon Eclipse Ti-S.
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Virion purification. EBOV virions were partially purified similarly to the procedure reported for Lassa
virus (82). Briefly, supernatants from DMSO- or statin-treated and EBOV-infected cells were clarified by
centrifugation at 1,500 � g for 30 min. Clarified supernatants were subjected to ultracentrifugation
(100,000 � g for 90 min at 4°C) through a 20% sucrose cushion to collect EBOV virions. Virions were
suspended in 2� Western lysis buffer, gamma irradiated at 5 � 106 rads using a high-energy 60Co source,
and analyzed by Western blotting to detect GP and VP40.

Endo H and PNGase F treatment. In order to investigate the modifications of EBOV glycoproteins,
cell lysates were digested with endo H or PNGase F (New England Biolabs, Ipswich, MA) according to the
manufacturer’s instructions. The digested proteins were resolved by SDS-PAGE under reducing condi-
tions and were analyzed by Western blotting.

Statistical analysis. Error bars in graphs represent standard deviations of the means from comparing
Student’s t tests for paired samples. Differences were considered significant for P values of �0.005.
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